Attribute Measurement System with Information Barrier (AMS/IB): Conceptual Description

Duncan MacArthur
Los Alamos National Laboratory

Outline

- Information Barrier (IB)
 - Goals
 - Basic concept
- Attribute Measurement System with Information Barrier (AMS/IB)
 - Design features and types of controls
 - Core design concept
 - Inspectability and authentication
 - AMS/IB elements and integration

Goals of an Information Barrier

- Allow meaningful measurements while preventing release of classified information
 - Only unclassified data are displayed
 - No access to classified data
- Assure monitoring party of the validity of these measurements
 - Unclassified output is accurate and authentic

Conceptual Information Barrier

Red = potentially contains classified data Green = unclassified data in open area

Defense in Depth

- No single-point failure modes
- Combination of protection methods
 - Elimination
 - Substitution
 - Hardware
 - Software
 - Procedures
- Series of simple protective shells
- Minimization of quantity of classified data

Other Design Features

Modular

- Facilitates changes in detector systems or attributes
- Avoids obsolescence
- Facilitates maintenance (with identical modules)

Ability to Authenticate

- Classified measurements with secure system
- Unclassified authentication measurements with open system

Open vs Secure Modes

Measurement

Mode

Background

Open or Secure

Calibration and

Open or Secure

Measurement Control

Unclassified Assay

Open or Secure

Classified Assay

Secure Only

· classified measurements

Core Information Barrier Concept

- potentially contains classified data
- unclassified data in protected area
- barrier elements
- unclassified data in open area

Inspectability

Simple Hardware — easy

Complex Hardware — difficult

Application Software — time-consuming

System Software — very difficult

Minimize Difficulty of Authentication

- Minimize number of difficult-to-inspect elements
- Minimize overall complexity
- Possibilities
 - Destroy used AMS/IB elements that might have once contained classified information
 - Present multiple copies of some AMS/IB elements for selection and use by the monitoring parties

Elements of AMS/IB

- Detector Systems
- Computational Block
- Security Switches
- Control Switches
- Security Watchdog
- Shielded Electronics Rack
- Data Barrier
- Display

- potentially contains classified data
- unclassified data in protected area
- barrier elements
- unclassified data in open area

AMS/IB Elements Where Classified Data Temporarily Reside

Detector Systems

Modular design

"Stand-alone" operation

Computational Block

Simple element

Threshold comparison

Hardware or software implementation

Read-only memory

Protective Measures

Security Watchdog

Controls all power to system Allows operation in "authentication" (unclassified) mode

Data Barrier—Filtering, isolation, and unidirectional transmission

Shielded Electronics Rack

Physical security

Emanations reduction

Reduces opportunity for external control

- unclassified data in protected area
- barrier elements

Input/Output Devices

Switches

Detector control

Security

No communication between control and security

Display

Simple—No complex data display

Output Only

Unclassified Data Logging Possible

unclassified data in open area

System Integration Details

Attributes and Detectors

Plutonium Presence Pu300/600 System

Plutonium Isotopic Ratio Pu300/600 System

Plutonium Mass Neutron Multiplicity Counter

and Pu300/600 Analyzer

Plutonium Age Pu300/600 System

Absence of Oxide Neutron Multiplicity Counter

and Pu900 System

Symmetry Neutron Multiplicity Counter

